CHAPTER III*

Fluctuations in Coin Tossing
and Random Walks

This chapter digresses from our main topic, which is taken up again
only in chapter V. Its material has traditionally served as a first orientation
and guide to more advanced theories. Simple methods will soon lead us
to results of far-reaching theoretical and practical importance. We shall
encounter theoretical conclusions which not only are unexpected but
actually come as a shock to intuition and common sense. They will reveal
that commonly accepted notions concerning chance fluctuations are without
foundation and that the implications of the law of large numbers are
widely misconstrued. For example, in various applications it is assumed
that observations on an individual coin-tossing game during a long time
interval will yield the same statistical characteristics as the observation of
the results of a huge number of independent games at one given instant.
This is not so. Indeed, using a currently popular jargon we reach the
conclusion that in a population of normal coins the majority is necessarily
maladjusted. [For empirical illustrations see section 6 and example (4.5).]

Until recently the material of this chapter used to be treated by analytic
methods and, consequently, the results appeared rather deep. The
elementary method! used in the sequel is therefore a good example of the
newly discovered power of combinatorial methods. The results are fairly
representative of a wider class of fluctuation phenomena® to be discussed

* This chapter may be omitted or read in conjunction with the following chapters.
Reference to its contents will be made in chapters X (laws of large numbers), XI (first-
passage times), XIII (recurrent events), and X1V (random walks), but the contents
will not be used explicitly in the sequel.

* The discovery of the possibility of an elementary approach was the principal
motivation for the second edition of this book (1957). The present version is new and
greatly improved since it avoids various combinatorial tricks.

# See footnote 12.
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68 RANDOM WALKS [IIL.1

in volume 2. All results will be derived anew, independently, by different
methods. This chapter will therefore serve primarily readers who are not
in a hurry to proceed with the systematic theory, or readers interested in
the spirit of probability theory without wanting to specialize in it. For
other readers a comparison of methods should prove instructive and
interesting. Accordingly, the present chapter should be read at the reader’s
discretion independently of, or parallel to, the remainder of the book.

1. GENERAL ORIENTATION.
THE REFLECTION PRINCIPLE

From a formal point of view we shall be concerned with arrangements
of finitely many plus ones and minus ones. Consider n = p + ¢ symbols
€, ..., €,, each standing either for +1 or for —1; suppose that there
are p plus ones and ¢ minus ones. The partial sum s, =€, + * -+ + €,
represents the difference between the number of pluses and minuses
occurring at the first k places. Then

1.1) SK—SHa===xI1, 5=0 s,=p—gq,

where k=1,2,...,n.

We shall use a geometric terminology and refer to rectangular coordinates
t, z; for definiteness we imagine the ¢-axis is horizontal, the z-axis vertical.
The arrangement (e, ..., ¢€,) will be represented by a polygonal line
whose kth side has slope ¢, and whose kth vertex has ordinate s,. Such
lines will be called paths.

Definition. Let n> 0 and = be integers. A path (sq, Sy, ...,5,)
Jrom the origin to the point (n,x) is a polygonal line whose vertices have
abscissas 0,1,...,n and ordinates s,,5y,...,s, satisfying (1.1) with
s, = &.

We shall refer to n as the length of the path. There are 2" paths of
length n. If p among the ¢, are positive and ¢ are negative, then

(1.2) n=p-+yq, r=p—gq.

A path from the origin to an arbitrary point (n, x) exists only if » and
z are of the form (1.2). In this case the p places for the positive ¢, can
be chosen from the n = p + ¢ available places in

(1.3) N,, = (p-;q) _ (p;-q)

different ways. For convenience we define N, , =0 whenever n and x
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are not of the form (1.2). With this convention there exist exactly N,,
different paths from the origin to an arbitrary point (n, ).

Before turning to the principal topic of this chapter, namely the theory
of random walks, we illustrate possible applications of our scheme.

Examples. (a) The ballot theorem. The following amusing proposition
was proved in 1878 by W. A. Whitworth, and again in 1887 by J. Bertrand.

Suppose that, in a ballot, candidate P scores p votes and candidate Q
scores g votes, where p > q. The probability that throughout the counting
there are always more votes for P than for Q equals (p—q)/(p+q).

Similar problems of arrangements have attracted the attention of students
of combinatorial analysis under the name of ballot problems. The recent
renaissance of combinatorial methods has increased their popularity, and
it is now realized that a great many important problems may be reformu-
lated as variants of some generalized ballot problem.?

o N

Figure 1. Ilustrating positive paths. The figure shows also that there are exactly as
many strictly positive paths from the origin to the point (2n,0) as there are non-
negative paths from the origin to (2#—2, 0).

The whole voting record may be represented by a path of length p + ¢
in which ¢, = +1 if the kth vote is for P; conversely, every path from
the origin to the point (p + ¢, p — g) can be interpreted as a record of
a voting with the given totals p and g. Clearly s, is the number of votes
by which P leads, or trails, just after the kth vote is cast. The candidate
P leads throughout the voting if, and only if, s, > 0,...,s, > 0, that
is, if all vertices lie strictly above the s-axis. (The path from 0 to N; in
figure 1 is of this type.) The ballot theorem assumes tacitly that all
admissible paths are equally probable. The assertion then reduces to the
theorem proved at the end of this section as an immediate consequence of
the reflection lemma.

(b) Galton’s rank order test.* Suppose that a quantity (such as the height

® A survey of the history and the literature may be found in Some aspects of the
random sequence, by D. E. Barton and C. L. Mallows [Ann. Math. Statist., vol. 36
(1965), pp. 236-260]. These authors discuss also various applications. The most recent
generalization with many applications in queuing theory is due to L. Takacs.

* J. L. Hodges, Biometrika, vol. 42 (1955), pp. 261-262.
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of plants) is measured on each of r treated subjects, and also on each of
r control subjects. Denote the measurements by ay,...,a, and by,...,
b,, respectively. To fix ideas, suppose that each group is arranged in
decreasing order: a;>a,>-'+ and b, >b,>.... (To avoid
trivialities we assume that no two observations are equal.) Let us now
combine the two sequences into one sequence of n = 2r numbers ar-
ranged in decreasing order. For an extremely successful treatment all the
a’s should precede the b’s, whereas a completely ineffectual treatment
should result in a random placement of a’s and b’s. Thus the efficiency
of the treatment can be judged by the number of different o’s that
precede the b of the same rank, that is, by the number of subscripts
k for which a, > b,. This idea was first used in 1876 by F. Galton
for data referred to him by Charles Darwin. In this case r equaled
15 and the a’s were ahead 13 times. Without knowledge of the actual
probabilities Galton concluded that the treatment was effective. But,
assuming perfect randomness, the probability that the a’s lead 13
times or more equals %. This means that in three out of sixteen cases a
perfectly ineffectual treatment would appear as good or better than the
treatment classified as effective by Galton. This shows that a quantitative
analysis may be a valuable supplement to our rather shaky intuition.
For an interpretation in terms of paths write ¢, = +1 or —1 according
as the kth term of the combined sequence is an a ora b. The resulting
path of length 2r joins the origin to the point (2r,0) of the r-axis.
The event a;, > b, occurs if, and only if, s,,_; contains at least k plus
ones, that is, if sy,_; > 0. This entails s,, > 0, and so the (2k—1)st and
the 2kth sides are above the t-axis. It follows that the inequality a, > b,
holds » times if, and only if, 2» sides lie above the t-axis. In section 9
we shall prove the unexpected result that the probability for thisis 1/(r+1),
irrespective of . (For related tests based on the theory of runs see 11, 5.5.)
(¢) Tests of the Kolmogorov-Smirnov type. Suppose that we observe two
populations of the same biological species (animals or plants) living at
different places, or that we wish to compare the outputs of two similar
machines. For definiteness let us consider just one measurable charac-
teristic such as height, weight, or thickness, and suppose that for each of
the two populations we are given a sample of r observations, say
a...,a, and by,..., b, The question is roughly whether these data
are consistent with the hypothesis that the two populations are statistically
identical. In this form the problem is vague, but for our purposes it is
not necessary to discuss its more precise formulation in modern statistical
theory. It suffices to say that the tests are based on a comparison of the
two empirical distributions. For every ¢ denote by A(z) the fraction
kin of subscripts i for which a; < t. The function so defined over the
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real axis is the empirical distribution of the a’s. The empirical distribution
B is defined in like manner. A refined mathematical theory originated
by N. V. Smirnov (1939) derives the probability distribution of the maxi-
mum of the discrepancies |A(#) — B(t)| and of other quantities which can
be used for testing the stated hypothesis. The theory is rather intricate,
but was greatly simplified and made more intuitive by B. V. Gnedenko
who had the lucky idea to connect it with the geometric theory of paths.
As in the preceding example we associate with the two samples a path of
length 2r leading from the origin to the point (2r, 0). To say that the
two populations are statistically indistinguishable amounts to saying that
ideally the sampling experiment makes all possible paths equally probable.
Now it is easily seen that [4(r) — B(t)] > & for some ¢ if, and only if,
Isy| > &r for some k. The probability of this event is simply the proba-
bility that a path of length 2r leading from the origin to the point (0, 2r)
is not constrained to the interval between F&r. This probability has
been known for a long time because it is connected with the ruin problem
in random walks and with the physical problem of diffusion with absorbing
barriers. (See problem 3.)

This example is beyond the scope of the present volume, but it illustrates
how random walks can be applied to problems of an entirely different
nature.

(d) The ideal coin-tossing game and its relation to stochastic processes.
A path of length n can be interpreted as the record of an ideal experiment
consisting of n successive tosses of a coin. If 41 stands for heads, then
s, equals the (positive or negative) excess of the accumulated number of
heads over tails at the conclusion of the kth trial. The classical description
introduces the fictitious gambler Peter who at each trial wins or loses a
unit amount. The sequence sy, S5, . . ., §, then represents Peter’s succes-
sive cumulative gains. It will be seen presently that they are subject to
chance fluctuations of a totally unexpected character.

The picturesque language of gambling should not detract from the
general importance of the coin-tossing model. In fact, the model may
serve as a first approximation to many more complicated chance-dependent
processes in physics, economics, and learning theory. Quantities such as
the energy of a physical particle, the wealth of an individual, or the
accumulated learning of a rat are supposed to vary in consequence of
successive collisions or random impulses of some sort. For purposes of a
first orientation one assumes that the individual changes are of the same
magnitude, and that their sign is regulated by a coin-tossing game. Refined
models take into account that the changes and their probabilities vary from
trial to trial, but even the simple coin-tossing model leads to surprising,
indeed to shocking, results. They are of practical importance because they
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show that, contrary to generally accepted views, the laws governing a
prolonged series of individual observations will show patterns and averages
far removed from those derived for a whole population. In other words,
currently popular psychological tests would lead one to say that in a
population of “normal” coins most individual coins are “maladjusted.”

It turns out that the chance fluctuations in coin tossing are typical for
more general chance processes with cumulative effects. Anyhow, it stands
to reason that if even the simple coin-tossing game leads to paradoxical
results that contradict our intuition, the latter cannot serve as a reliable
guide in more complicated situations. <

Figure 2. Illustrating the reflection principle.

It is as surprising as it is pleasing that most important conclusions can be
drawn from the following simple lemma.

Let A=(a,«) and B = (b, ) be integral points in the positive
quadrant: 5> a >0, « > 0, > 0. By reflection of 4 on the z-axis
is meant the point A’ = (a, —«). (See figure 2.) A path from 4 to B
is defined in the obvious manner.

Lemma.? (Reflection principle.) The number of paths from A to B
which touch or cross the x-axis equals the number of all paths from A’ to B.

Proof. Consider a path (s, =, S441,...,5, = f) from 4 to B
having one or more vertices on the t-axis. Let ¢ be the abscissa of the
first such vertex (see figure 2); thatis, choose ¢ sothat 5,>0,...,s5,_,>0,
5, =0. Then (=S, —Sgr1s++-» —Si1,5: =0, 8043, 5112,+-.,5) is a

5 The reflection principle is used frequently in various disguises, but without the
geometrical interpretation it appears as an ingenious but incomprehensible trick. The
probabilistic literature attributes it to D. André (1887). It appears in connection with
the difference equations for random walks in XIV, 9. These are related to some
partial differential equations where the reflection principle is a familiar tool called
method of images. 1t is generally attributed to Maxwell and Lord Kelvin. For the use
of repeated reflections see problems 2 and 3.
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path leading from A4’ to B and having T = (7, 0) as its first vertex on
the r-axis. The sections AT and A’'T being reflections of each other,
there exists a one-to-one correspondence between all paths from A’ to
B and such paths from A4 to B that have a vertex on the z-axis. This
proves the lemma. >

As an immediate consequence we prove the result discussed in example
(@). It will serve as starting point for the whole theory of this chapter.

The ballot theorem. Let n and x be positive integers. There are
exactly ;Nm paths (sy,...,5, = x) from the origin to the point (n, x)
such that s, >0,...,5, > 0.

Proof. Clearly there exist exactly as many admissible paths as there
are paths from the point (1, 1) to (n, ) which neither touch or cross the
t-axis. By the last lemma the number of such paths equals

p+q—1 p+q—1

Nn— z-1 = Nn— 2+l = -
i b (P—1> ( P )

with p and ¢ defined in (1.2). A trite calculation shows that the right

side equals N, .(p—q)/(p+q), as asserted. >

2. RANDOM WALKS: BASIC NOTIONS AND
NOTATIONS

The ideal coin-tossing game will now be described in the terminology
of random walks which has greater intuitive appeal and is better suited
for generalizations. As explained in the preceding example, when a path
(s1,...,5,) is taken as record of p successive coin tossings the partial
sums s,...,5, represent the successive cumulative gains. For the
geometric description it is convenient to pretend that the tossings are
performed at a uniform rate so that the nth trial occurs at epoch® n. The
successive partial sums sy, ..., s, will be marked as points on the vertical
z-axis; they will be called the positions of a “particle” performing a
random walk. Note that the particle moves in unit steps, up or down, on a

¢ Following J. Riordan, the word epoch is used to denote points on the time axis
because some contexts use the alternative terms (such as moment, time, point) in
different meanings. Whenever used mathematically, the word time will refer to an
interval or duration. A physical experiment may take some time, but our ideal trials
are timeless and occur at epochs.
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line. A path represents the record of such a movement. For example, the
path from O to N in figure 1 stands for a random walk of six steps
terminating by a return to the origin.

Each path of length p can be interpreted as the outcome of a random
walk experiment; there are 2° such paths, and we attribute probability
277 to each. (Different assignments will be introduced in chapter XIV.
To distinguish it from others the present random walk is called symmetric.)

We have now completed the definition of the sample space and of the
probabilities in it, but the dependence on the unspecified number p is
disturbing. To see its role consider the event that the path passes through
the point (2,2). The first two steps must be positive, and there are 272
paths with this property. As could be expected, the probability of our
event therefore equals } regardless of the value of p. More generally, for
any k < p it is possible to prescribe arbitrarily the first k steps, and
exactly 27~ paths will satisfy these k conditions. It follows that an
event determined by the first k < p steps has a probability independent of
p. In practice, therefore, the number p plays no role provided it is
sufficiently large. In other words, any path of length » can be taken as
the initial section of a very long path, and there is no need to specify the
latter length. Conceptually and formally it is most satisfactory to consider
unending sequences of trials, but this would require the use of non-
denumerable sample spaces. In the sequel it is therefore understood that
the length p of the paths constituting the sample space is larger than the
number of steps occurring in our formulas. Except for this we shall be
permitted, and glad, to forget about p.

To conform with the notations to be used later on in the general theory
we shall denote the individual steps generically by X;,X,,... and the
positions of the particle by S;,S,,.... Thus

2.1) S, =X, +-+X,, S,=0

From any particular path one can read off the corresponding values of
X;, X,, ... ; that is, the X, are functions of the path.” For example,
for the path of figure 1 clearly X; =X, =X;=1 and X;=X;=
=X;=—1 .

We shall generally describe all events by stating the appropriate con-
ditions on the sums S,. Thus the event ““at epoch n the particle is at the
point >’ will be denoted by {S, = r}. For its probability we write p,, ,.
(For smoother language we shall describe this event as a “visit” to r at

7 In the terminology to be introduced in chapter IX the X, are random variables.
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epoch n.) The number N, , of paths from the origin to the point (n, r)
is given by (1.3), and hence

n
(2.2) Por=P{S,=r}= (n + r)Z“”,
2

where it is understood that the binomial coefficient is to be interpreted as
zero unless (n--r)/2 is an integer between 0 and », inclusive.

A return to the origin occurs at epoch k if S, = 0. Here k is neces-
sarily even, and for k = 2» the probability of a return to the origin equals
Pav.o- Because of the frequent occurrence of this probability we denote it
by u,,. Thus
(2.3) 4y, = (2”) 22,

14
When the binomial coefficient is expressed in terms of factorials, Stirling’s
formula II, (9.1) shows directly that

(2.4) Uy~ —

J
where the sign ~ indicates that the ratio of the two sides tends to 1 as
v — 00; the right side serves as excellent approximation® to u,, even for
moderate values of ».

Among the returns to the origin the first return commands special
attention. A first return occurs at epoch 2v if

(25) S1 # 0’ LAY Szv_l 5’5 0, but S2v = 0

The probability for this event will be denoted by f;,. By definition
fo=0.

The probabilities f,, and wu,, are related in a noteworthy manner. A
visit to the origin at epoch 2n may be the first return, or else the first
return occurs at an epoch 2k < 2n and is followed by a renewed return
2n — 2k time units later. The probability of the latter contingency is
Jortan—o, because there are 2%f, paths of length 2k ending with a first
return, and 22"~%y, ,. paths from the point (2k,0) to (2n,0). It
follows that

(26) u2n =.f2u2n—2 +/:1u2n—4 + ct +_f2nu0’ n 2 1‘
(See problem 5.)
® For the true value u;, = 0.2461 we get the approximation 0.2523; for wuy =

0.1762 the approximation is 0.1784. The per cent error decreases roughly in inverse
proportion to .



76 RANDOM WALKS [I11.3

The normal approximation. Formula (2.2) gives no direct clue as to the range within
which S, is likely to fall. An answer to this question is furnished by an approximation
formula which represents a special case of the central limit theorem and will be proved®
in VIIL, 2.

The probability that @ < S, < b is obtained by summing probabilities p,,. over
all r between a and b. For the evaluation it suffices to know the probabilities for all
inequalities of the form S, > a. Such probabilities can be estimated from the fact
that for all * as n—

— 1 @©
.7 P{S, > x\/n} =1 = R=) = \—/2=f e ¥ dr
T

where M stands for the normal distribution function defined in VII, 1. Its nature is of
no particular interest for our present purposes. The circumstance that the limit exists
shows the important fact that for large n theratios S,/V'n are governed approximately
by the same probabilities and so the same approximation can be used for alt large n.

The accompanying table gives a good idea of the probable range of S,. More and
better values will be found in table 1 of chapter VII.

TABLE 1
x 0.5 1.0 ! 1.5 ’ 2.0 2.5 3.0
I I
P{S, > =V ;} 0.309 ! 0.159 ' 0.067 J 0.023 0.006 L 0.001

3. THE MAIN LEMMA

As we saw, the probability of a return to the origin at epoch 2» equals
the quantity w,, of (2.3). As the theory of fluctuations in random walks
began to take shape it came as a surprise that almost all formulas involved
this probability. One reason for this is furnished by the following simple
lemma, which has a mild surprise value of its own and provides the key
to the deeper theorems of the next section.

Lemma 1.2° The probability that no return to the origin occurs up to and
including epoch 2n is the same as the probability that a return occurs at
epoch 2n. In symbols,

(3.1) P{S, %0, ...,S,, # 0} = P{S,, = 0} = u,,.

® The special case required in the sequel is treated separately in VII, 2 without
reference to the general binomial distribution. . The proof is simple and can be inserted
at this place.

10 This lemma is obvious from the form of the generating function I fys* [see
XI, (3.6)] and has been noted for its curiosity value. The discovery of its significance
is recent. For a geometric proof see problem 7.



I11.3] THE MAIN LEMMA 77

Here, of course, n > 0. When the event on the left occurs either all the
S, are positive, or all are negative. The two contingencies being equally
probable we can restate (3.1) in the form

(3.2) P{S,;>0,...,S;, > 0} = Lu,.

Proof. Considering all the possible values of S,,, it is clear that
(3.3) P{S$;>0,...,8,,>0=3P{S;>0,...,S,,,>0,8,, =2r}
r=1

(where all terms with r > n vanish). By the ballot theorem the number
of paths satisfying the condition indicated on the right side equals
Nipi.2-1 — Nap_1.9041, and so the rth term of the sum equals

?:‘(Pzn—l,zr—l - Pzn—1,21+1)-

The negative part of the rth term cancels against the positive part of the
(r+1)st term with the result that the sum in (3.3) reduces to 3py, ;1. It
is easily verified that p,, ;, = 4, and this concludes the proof. >

The lemma can be restated in several ways; for example,

(3.4) P{S;>0,...,S,, > 0} = u,,

Indeed, a path of length 2n with all vertices strictly above the x-axis passes
through the point (1, 1). Taking this point as new origin we obtain a path
of length 2n — 1 with all vertices above or on the new z-axis. It follows
that

(35 P{8;>0,...,5, >0 =4P{8$,>0,...,S,,, > 0}

But S,,; is an odd number, and hence S,,.; > 0 implies that also
S;, 2 0. The probability on the right in (3.5) is therefore the same as
(3.4) and hence (3.4) is true. (See problem 8.)

Lemma 1 leads directly to an explicit expression for the probability
distribution for the first return to the origin. Saying that a first return
occurs at epoch 2z amounts to saying that the conditions

Sl¢0’-",s2k;é0

are satisfied for k =n — 1, but not for k = n. In view of (3.1) this
means that

(36) _f2n = Ugyo — Ugy, n= 1, 2, e
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A trite calculation reduces this expression to

1
= u
2n — 1

3.7 Son

2n*

We have thus proved

Lemma 2. The probability that the first return to the origin occurs at
epoch 2n is given by (3.6) or (3.7).

It follows from (3.6) that f, +f; +:--=1. In the coin-tossing
terminology this means that an ultimate equalization of the fortunes
becomes practically certain if the game is prolonged sufficiently long. This
was to be anticipated on intuitive grounds, except that the great number of
trials necessary to achieve practical certainty comes as a surprise. For
example, the probability that no equalization occurs in 100 tosses is about
0.08.

4. LAST VISIT AND LONG LEADS

We are now prepared for a closer analysis of the nature of chance
fluctuations in random walks. The results are startling. According to
widespread beliefs a so-called law of averages should ensure that in a
long coin-tossing game each player will be on the winning side for about
half the time, and that the lead will pass not infrequently from one player
to the other. Imagine then a huge sample of records of ideal coin-tossing
games, each consisting of exactly 2n trials. We pick one at random and
observe the epoch of the last tie (in other words, the number of the last
trial at which the accumulated numbers of heads and tails were equal).
This number is even, and we denote it by 2k (so that 0 < k < n).
Frequent changes of the lead would imply that k is likely to be relatively
close to n, but this is not so. Indeed, the next theorem reveals the
amazing fact that the distribution of & is symmetric in the sense that any
value k has exactly the same probability as » — k. This symmetry
implies in particular that the inequalities £ > n/2 and k <n/2 are
equally likely.’* With probability } no equalization occurred in the second
half of the game, regardless of the length of the game. Furthermore, the
probabilities near the end points are greatest; the most probable values
for k are the extremes 0 and n. These results show that intuition leads
to an erroneous picture of the probable effects of chance fluctuations. A
few numerical results may be illuminating.

11 The symmetry of the distribution for & was found empirically by computers and
verified theoretically without knowledge of the exact distribution (4.1). See D. Blackwell,
P. Dewel, and D. Freedman, Ann. Math. Statist., vol. 35 (1964), p. 1344,



